Jul 4, 2013
Extreme Weather (July 2013) - YouTube
Published on Jul 4, 2013
Follow ClimateState on facebook for more climate research https://www.facebook.com/ClimateState
Extreme Weather (July 2013) - YouTube
Seven Health Uses for Honey
Health & Disease, Insects — by Melissa Rasmussen July 5, 2013
Photos © Craig Mackintosh
Honey, sweet gift of our buzzing sisters the bees, is one of Nature’s exceptional health offerings. Bees make it for themselves and their brood, to live on through the winter – as such, it’s packed with everything they need, including vitamins, minerals, antioxidants, and enzymes that are beneficial for us too! Besides bee-ing a delicious, healthy sweetener for our food, honey’s properties make it useful for other healing purposes. Here are seven. Read Complete Article: Seven Health Uses for Honey - The Permaculture Research Institute
Photos © Craig Mackintosh
Honey, sweet gift of our buzzing sisters the bees, is one of Nature’s exceptional health offerings. Bees make it for themselves and their brood, to live on through the winter – as such, it’s packed with everything they need, including vitamins, minerals, antioxidants, and enzymes that are beneficial for us too! Besides bee-ing a delicious, healthy sweetener for our food, honey’s properties make it useful for other healing purposes. Here are seven. Read Complete Article: Seven Health Uses for Honey - The Permaculture Research Institute
Declaration of Independence - YouTube
http://www.constitutionlive.com This is a very cool video from www.declareyourself.com. The DOI done Hollywood style. Check out more patriotic videos at www.constitutionlive.com
Declaration of Independence
Jul 3, 2013
How Organic Farming Prevents the Use of Fertilizers
Story at-a-glance
Earth's soil is now being depleted of nutrients at more than 13 percent the rate it can be replaced. We may also be facing looming shortages of two critical fertilizer ingredients: phosphorous and potassium
Many areas of Minnesota, which is prime farmland, now face the problem of having dangerously elevated levels of nitrogen in their drinking water. More than half of 40 lakes surveyed in China also suffer from fertilizer runoff
According to soil science expert, fertilizers are unnecessary. Healthy plant growth is dependent on having the right helper organisms in the soil, which take the mineral material from the soil and convert it into a plant-available form
Organic farming practices use natural, time-tested techniques that naturally prevents soil depletion and destruction, and doesn’t use chemical fertilizers and other agricultural chemicals that pollute our soil, air, and waterways
By Dr. Mercola
Environmental pollution is a significant problem. But while most of the focus is placed on polluting industries, toxins like mercury and small particle traffic pollution, a major source of environmental devastation is caused by modern food production. Far from being life sustaining, our modern chemical-dependent farming methods:
Strip soil of nutrients
Destroy critical soil microbes
Contribute to desertification and global climate change, and
Saturate farmlands with toxic pesticides, herbicides and fertilizers that then migrate into ground water, rivers, lakes and oceans.
For example, many areas of Minnesota, which is prime farmland, now face the problem of having dangerously elevated levels of nitrogen in their drinking water.
The conversion of grasslands and pastures into chemical-driven, industrial crop land has eliminated much of the natural filtering of ground water that such native landscapes typically provide. Health risks of nitrogen include a potential connection to cancer, as well as thyroid and reproductive problems in both humans and livestock.
Looming Fertilizer Shortage Could Spell the End of Modern Agriculture
Modern fertilizer consists of varying amounts of nitrogen (N), phosphorus (P) and potassium (K). These three are believed to be essential for plants to grow, (below, I’ll discuss why NPK may not be as necessary as we think.), and are extracted from the soil with each harvest.
This is why farmers spread fertilizer on their fields, to replace the nutrients lost. It’s certainly not the ideal and sustainable way to farm, but it’s thought to be the most efficient for large-scale farms. Strategies like crop rotation and allowing large fields to rest would cut too deep into profits that are based on quantity, opposed to quality.
Unfortunately, the Earth's soil is now being depleted of nutrients at more than 13 percent the rate it can be replaced. Not only that, but according to some, we may also be facing looming shortages of two critical fertilizer ingredients: phosphorus and potassium.
A 2012 article in Mother Jones1 discussed “peak phosphorus and potassium,” drawing lines of similarity between the diminishing reserves of these natural elements and “peak oil.”
Unlike nitrogen, phosphorus and potassium cannot be synthesized, and our aggressive large-scale farming methods, which deplete soils of nutrients that then must be replaced, are quickly burning through available phosphorus and potassium stores.
According to well-known investor Jeremy Grantham, writing for Nature:
“These two elements cannot be made, cannot be substituted, are necessary to grow all life forms, and are mined and depleted. It’s a scary set of statements. Former Soviet states and Canada have more than 70 percent of the potash. Morocco has 85 percent of all high-grade phosphates. It is the most important quasi-monopoly in economic history.
What happens when these fertilizers run out is a question I can’t get satisfactorily answered and, believe me, I have tried. There seems to be only one conclusion: their use must be drastically reduced in the next 20-40 years or we will begin to starve.”
This largely unknown issue may end up playing a more significant role than you can currently imagine, because it cuts to the heart of the sustainability of modern agricultural practices, or rather the lack thereof.
“[T]he next time someone facilely insists that the 'industrial farms are the future,' ask what the plan is regarding phosphorus,” Mother Jones writes. “Developing an agriculture that's ready for a phosphorus shortage means a massive focus on recycling the nutrients we take from the soil back into the soil—in other words, composting, not on a backyard level but rather on a society-wide scale.
It also requires policies that give farmers incentives to build up organic matter in soil, so it holds in nutrients instead of letting them leach away... Both of these solutions, of course, are specialties of organic agriculture.”
Monoculture vs. Polyculture
Monoculture (or monocropping) is defined as the high-yield agricultural practice of growing a single crop year after year on the same land, in the absence of rotation through other crops. Corn, soybeans, wheat, and to some degree rice, are the most common crops grown with monocropping techniques. In fact, corn, wheat and rice now account for 60 percent of human caloric intake, according to the UN Food and Agriculture Organization.2
By contrast, polyculture (the traditional rotation of crops and livestock) better serves both land and people. Polyculture evolved to meet the complete nutritional needs of a local community. Polyculture, when done mindfully, automatically replenishes what is taken out, which makes it sustainable with minimal effort.
If it’s true that we may at some point face a shortage of phosphorus and potassium, large-scale farming facilities would be hard-pressed to produce much of anything after a short while. Such shortages might even lead to geopolitical strife, as phosphate rock is primarily concentrated in the occupied territory of the Western Sahara region of Morocco. It may sound farfetched to some, but how far would a nation go to secure access to such a location if the future of the entire agricultural industry and food supply depended on it?
Monocropping Is NOT the Way to Feed a Growing Population
The evidence tells us that forging more sustainable alternatives is imperative if we hope to survive. Yet proponents of factory farms and genetically engineered crops argue that monocropping, or crop specialization, is the only way to feed the masses and that it's far more profitable than having small independent farms in every township.
But is this really true? A number of studies show just the opposite! In fact, studies are showing that medium-sized organic farmsare far more profitable than ANY sized industrial agricultural operation.
For example, researchers at the University of Wisconsin's College of Agriculture and Life Sciences and Michael Fields Agricultural Institute3 (results published in 2008 in the Agronomy Journal)4 found that traditional organic farming techniques of planting a variety of plants to ward off pests is more profitable than monocropping. The organic systems resulted in higher profits than "continuous corn, no-till corn and soybeans, and intensively managed alfalfa."
Not only that, but organic farming practices use natural, time-tested techniques that naturally prevents soil depletion and destruction, and doesn’t use chemical fertilizers and other agricultural chemicals that pollute our soil, air, and waterways.
In the study just mentioned, the researchers concluded that government policies supporting monoculture are "outdated," and that it's time for support to be shifted toward programs that promote crop rotation and organic farming. As it turns out, when you eliminate the agricultural chemicals, specialized machinery and multi-million dollar buildings, fuel costs, insurance costs, and the rest of the steep financial requirements of a big industrial operation, your cost of producing food takes a serious dive into the doable. And did I mention… the food from organic farms tend to be far more nutritious, besides being free of toxic contaminants?
Even the US Department of Agriculture (USDA) is starting to question our current path of monoculture. It recently released a report titled: "Climate Change and Agriculture in the United States."5 According to the report, our current agricultural system, which is dominated by corn and soy, is unsustainable in the long term. Should temperatures rise as predicted, the US could expect to see significant declines in yields by the middle of this century. Food shortages would be inevitable, since little besides these crops are grown. (Keep in mind the primary crops grown in the US are used in processed food production, so countless numbers of food products would be affected by massive crop loss.)
Nitrogen Overuse Threatens the Environment
Going back to where we started, the overuse of nitrogen in farming is causing far more environmental devastation than many currently comprehend. A recent National Geographic article6 addresses this issue:
“'Runaway nitrogen is suffocating wildlife in lakes and estuaries, contaminating groundwater, and even warming the globe’s climate. As a hungry world looks ahead to billions more mouths needing nitrogen-rich protein, how much clean water and air will survive our demand for fertile fields?'
China, the world’s largest producer of synthetic nitrogen, has hundreds of nitrogen factories, and the country’s farmers apply vast amounts of nitrogen to their fields. One rice farmer reports spreading no less than 530 pounds of urea, a dry form of nitrogen, on each acre. Vegetable farmers use even more than that. According to the featured article,7 some use upwards of two tons of nitrogen each hectare (2.47 acres).
'Few of them think they’re doing anything harmful. No, no pollution,' says Song, when asked about the environmental effects of fertilizer,' the article states. "Scientists tell a different story. 'Nitrogen fertilizer is overused by 30 to 60 percent' in intensively managed fields, says Xiaotang Ju, of the China Agricultural University in Beijing. 'It’s misuse!' Once spread on fields, nitrogen compounds cascade through the environment, altering our world, often in unwelcome ways. Some of the nitrogen washes directly from fields into streams or escapes into the air. Some is eaten, in the form of grain, by either humans or farm animals, but is then released back into the environment as sewage or manure from the world’s growing number of pig and chicken farms.”
Water pollution, as mentioned earlier, is one of the side effects of such overuse. In a matter of decades, rivers that used to run crystal clear though Chinese provinces are now cloudy from overgrowth of phytoplankton, fed by fertilizer runoff from the fields. According to National Geographic:
“A recent national survey of 40 lakes in China found that more than half of them suffered from too much nitrogen or phosphorus. (Fertilizer containing phosphorus is often to blame for algal growth in lakes.)
The best known case is Lake Tai, China’s third largest freshwater lake, which regularly experiences huge blooms of toxic cyanobacteria. A spreading bloom in 2007 contaminated water supplies for two million people in the nearby city of Wuxi. Excess nutrients are damaging fisheries in China’s coastal areas in the same way that fertilizer runoff flowing down the Mississippi has destroyed fisheries in the Gulf of Mexico: by creating dead zones in which algae and phytoplankton bloom, die, and decompose, using up oxygen and suffocating fish.”
Finding the Middle Ground of Good Harvests with Reduced Fertilizer Pollution
National Geographic describes a research project in Michigan that has been ongoing for the past two decades. The project is part of Michigan State University’s Kellogg Biological Station, near Kalamazoo. Here, fields that are exactly one hectare in size provide side-by-side comparisons of four different farming methods, ranging from conventional to organic. Everything that is added to or removed from each field is carefully measured, including rainfall, fertilizer, nitrous oxide, water that leaches into groundwater, and the harvest itself. According to the article:
“Each field planted according to standard plowing and fertilizer recommendations released 610 pounds of nitrogen per acre into Michigan’s shallow groundwater over the past 11 years... The organic fields in Robertson’s experiment, which received no commercial fertilizer or manure, lost only a third as much—but those fields also produced 20 percent less grain.
Intriguingly, the 'low input' fields, which received small amounts of fertilizer but were also planted with winter cover crops, offered the best of both worlds: Average yields were about as high as those from the conventional fields, but nitrogen leaching was much reduced, almost to the level of the organic fields.
If America’s farmers could cut their nitrogen losses to something close to this level... restored wetlands and revived small streams could clean up the rest. As in China, though, many farmers find it hard to change. When a family’s livelihood is at stake, it may seem safer to apply too much fertilizer rather than too little. 'Being a good steward currently has economic consequences that are unfair,' says Robertson.”
How Sustainable Soil Science Can Help Rescue Our Environment and Food Supply
I recently interviewed Dr. Elaine Ingham,8 an internationally recognized expert on the benefits of sustainable soil science. I also recently visited her at her new position at the Rodale Institute in Pennsylvania. According to Dr. Ingham, a key component of successful agriculture lies in having the right helper organisms in the soil; beneficial species of bacteria, fungi, protozoa, beneficial nematodes (not the weedfeeders), microarthropods, and earthworms—all of which contribute to plant growth in a number of different ways.
Nutrient cycling is another major issue. According to Dr. Ingham, there’s no soil on Earth that lacks the nutrients to grow a plant. She believes the concept that your soil is deficient and needs added phosphorus or nitrogen etc in order to grow plants is seriously flawed, and largely orchestrated by the chemical companies, because it’s based on looking at the soluble, inorganic nutrients that are partly present in your soil.
The real nutrition your plants require is actually derived from microorganisms in the soil. These organisms take the mineral material that’s in your soil and convert it into a plant-available form. Without these bioorganisms, your plants cannot get the nutrients they need. So what you need is not more chemical soil additives, what you need is the proper balance of beneficial soil organisms. According to Dr. Ingham:
“It’s very necessary to have these organisms. They will supply your plant with precisely the right balances of all the nutrients the plant requires. When you start to realize that one of the major roles and functions of life in the soil is to provide nutrients to the plants in the proper forms, then we don’t need inorganic fertilizers. We certainly don’t have to have genetically engineered plants or to utilize inorganic fertilizers if we get this proper biology back in the soil.
If we balance the proper biology, we select against the growth of weeds, so the whole issue with herbicides is done away with. We don’t need the herbicides if we can get the proper life back into the soil and select for the growth of the plants that we want to grow and against the growth of the weedy species.”
Interestingly enough, you can use a starter culture to boost the fermentation and generation of beneficial bacteria much in the same way you can boost the probiotics in your fermented vegetables. For compost, this strategy is used if you want to compost very rapidly. In that case, you can use a starter to inoculate the specific sets of organisms that you need to encourage in that compost.
For optimal physical health, you need plant foods to contain the full set of nutrients that will allow the plant to grow in a healthy fashion, because that’s the proper balance of nutrients for us human beings as well. Dr. Ingham has written several books on this topic, including The Field Guide for Actively Aerated Compost Tea, and The Compost Tea Brewing Manual.
How to Help Support Sustainable Agriculture
If you want to optimize your health, you simply must return to the basics of healthy food choices and typically this includes buying your food from responsible, high-quality, sustainable sources. This is why I encourage you to support the small family farms in your area. This includes not only visiting the farm directly, if you have one nearby, but also taking part in farmer's markets and community-supported agriculture programs.
Not only is the food so much tastier and healthier when you get it from sustainable, non-CAFO sources, but there is something about shopping for fresh foods in an open-air, social environment that just feels right. An artificially lit, dreary supermarket -- home to virtually every CAFO food made -- just can't compete. If you want to experience some of these benefits first-hand, here are some great resources to obtain wholesome food that supports not only you but also the environment:
Alternative Farming Systems Information Center, Community Supported Agriculture (CSA)
Farmers' Markets -- A national listing of farmers' markets.
Local Harvest -- This Web site will help you find farmers' markets, family farms, and other sources of sustainably grown food in your area where you can buy produce, grass-fed meats, and many other goodies.
Eat Well Guide: Wholesome Food from Healthy Animals -- The Eat Well Guide is a free online directory of sustainably raised meat, poultry, dairy, and eggs from farms, stores, restaurants, inns, and hotels, and online outlets in the United States and Canada.
Community Involved in Sustaining Agriculture (CISA) -- CISA is dedicated to sustaining agriculture and promoting the products of small farms.
FoodRoutes -- The FoodRoutes “Find Good Food” map can help you connect with local farmers to find the freshest, tastiest food possible. On their interactive map, you can find a listing for local farmers, CSAs, and markets near you.
How Organic Farming Prevents the Use of Fertilizers
Jul 2, 2013
Video: The Farm Crisis | Watch IPTV Specials Online | PBS Video
Watch The Farm Crisis on PBS. See more from KDIN.
Explore why the farm crisis of the 1980s happened.
Program: IPTV Specials
Episode: The Farm Crisis
Explore why the farm crisis of the 1980s happened, meet the farm families who struggled and the men and women who fought so long and so loyally to help them, and examine how agriculture changed as a result of the economic crisis.
• Visit the The Farm Crisis webpage
Duration: (1:29:50) Premiere Date: 07/01/2013 Episode Expires: Never TV Rating: NR Closed Caption
Wonderful documentary! Monte
Video: The Farm Crisis | Watch IPTV Specials Online | PBS Video
• Visit the The Farm Crisis webpage
Duration: (1:29:50) Premiere Date: 07/01/2013 Episode Expires: Never TV Rating: NR Closed Caption
Wonderful documentary! Monte
Video: The Farm Crisis | Watch IPTV Specials Online | PBS Video
Jul 1, 2013
Humans – the real threat to life on Earth | Environment | The Observer
If population levels continue to rise at the current rate, our grandchildren will see the Earth plunged into an unprecedented environmental crisis, argues computational scientist Stephen Emmott in this extract from his book Ten Billion
The global population is projected to pass 10 billion this century. Photograph: Getty
Earth is home to millions of species. Just one dominates it. Us. Our cleverness, our inventiveness and our activities have modified almost every part of our planet. In fact, we are having a profound impact on it. Indeed, our cleverness, our inventiveness and our activities are now the drivers of every global problem we face. And every one of these problems is accelerating as we continue to grow towards a global population of 10 billion. In fact, I believe we can rightly call the situation we're in right now an emergency – an unprecedented planetary emergency.
Ten Billion
by Stephen Emmott
We humans emerged as a species about 200,000 years ago. In geological time, that is really incredibly recent. Just 10,000 years ago, there were one million of us. By 1800, just over 200 years ago, there were 1 billion of us. By 1960, 50 years ago, there were 3 billion of us. There are now over 7 billion of us. By 2050, your children, or your children's children, will be living on a planet with at least 9 billion other people. Some time towards the end of this century, there will be at least 10 billion of us. Possibly more.
We got to where we are now through a number of civilisation- and society-shaping "events", most notably the agricultural revolution, the scientific revolution, the industrial revolution and – in the West – the public-health revolution. By 1980, there were 4 billion of us on the planet. Just 10 years later, in 1990, there were 5 billion of us. By this point initial signs of the consequences of our growth were starting to show. Not the least of these was on water. Our demand for water – not just the water we drank but the water we needed for food production and to make all the stuff we were consuming – was going through the roof. But something was starting to happen to water.
Back in 1984, journalists reported from Ethiopia about a famine of biblical proportions caused by widespread drought. Unusual drought, and unusual flooding, was increasing everywhere: Australia, Asia, the US, Europe. Water, a vital resource we had thought of as abundant, was now suddenly something that had the potential to be scarce.
By 2000 there were 6 billion of us. It was becoming clear to the world's scientific community that the accumulation of CO2, methane and other greenhouse gases in the atmosphere – as a result of increasing agriculture, land use and the production, processing and transportation of everything we were consuming – was changing the climate. And that, as a result, we had a serious problem on our hands; 1998 had been the warmest year on record. The 10 warmest years on record have occurred since 1998.
We hear the term "climate" every day, so it is worth thinking about what we actually mean by it. Obviously, "climate" is not the same as weather. The climate is one of the Earth's fundamental life support systems, one that determines whether or not we humans are able to live on this planet. It is generated by four components: the atmosphere (the air we breathe); the hydrosphere (the planet's water); the cryosphere (the ice sheets and glaciers); the biosphere (the planet's plants and animals). By now, our activities had started to modify every one of these components.
Our emissions of CO2 modify our atmosphere. Our increasing water use had started to modify our hydrosphere. Rising atmospheric and sea-surface temperature had started to modify the cryosphere, most notably in the unexpected shrinking of the Arctic and Greenland ice sheets. Our increasing use of land, for agriculture, cities, roads, mining – as well as all the pollution we were creating – had started to modify our biosphere. Or, to put it another way: we had started to change our climate.
There are now more than 7 billion of us on Earth. As our numbers continue to grow, we continue to increase our need for far more water, far more food, far more land, far more transport and far more energy. As a result, we are accelerating the rate at which we're changing our climate. In fact, our activities are not only completely interconnected with but now also interact with, the complex system we live on: Earth. It is important to understand how all this is connected.
Let's take one important, yet little known, aspect of increasing water use: "hidden water". Hidden water is water used to produce things we consume but typically do not think of as containing water. Such things include chicken, beef, cotton, cars, chocolate and mobile phones. For example: it takes around 3,000 litres of water to produce a burger. In 2012 around five billion burgers were consumed in the UK alone. That's 15 trillion litres of water – on burgers. Just in the UK. Something like 14 billion burgers were consumed in the United States in 2012. That's around 42 trillion litres of water. To produce burgers in the US. In one year. It takes around 9,000 litres of water to produce a chicken. In the UK alone we consumed around one billion chickens in 2012. It takes around 27,000 litres of water to produce one kilogram of chocolate. That's roughly 2,700 litres of water per bar of chocolate. This should surely be something to think about while you're curled up on the sofa eating it in your pyjamas.
But I have bad news about pyjamas. Because I'm afraid your cotton pyjamas take 9,000 litres of water to produce. And it takes 100 litres of water to produce a cup of coffee. And that's before any water has actually been added to your coffee. We probably drank about 20 billion cups of coffee last year in the UK. And – irony of ironies – it takes something like four litres of water to produce a one-litre plastic bottle of water. Last year, in the UK alone, we bought, drank and threw away nine billion plastic water bottles. That is 36 billion litres of water, used completely unnecessarily. Water wasted to produce bottles – for water. And it takes around 72,000 litres of water to produce one of the 'chips' that typically powers your laptop, Sat Nav, phone, iPad and your car. There were over two billion such chips produced in 2012. That is at least 145 trillion litres of water. On semiconductor chips. In short, we're consuming water, like food, at a rate that is completely unsustainable.
Demand for land for food is going to double – at least – by 2050, and triple – at least – by the end of this century. This means that pressure to clear many of the world's remaining tropical rainforests for human use is going to intensify every decade, because this is predominantly the only available land that is left for expanding agriculture at scale. Unless Siberia thaws out before we finish deforestation. By 2050, 1bn hectares of land is likely to be cleared to meet rising food demands from a growing population. This is an area greater than the US. And accompanying this will be three gigatons per year extra CO2 emissions.If Siberia does thaw out before we finish our deforestation, it would result in a vast amount of new land being available for agriculture, as well as opening up a very rich source of minerals, metals, oil and gas. In the process this would almost certainly completely change global geopolitics. Siberia thawing would turn Russia into a remarkable economic and political force this century because of its newly uncovered mineral, agricultural and energy resources. It would also inevitably be accompanied by vast stores of methane – currently sealed under the Siberian permafrost tundra – being released, greatly accelerating our climate problem even further.
The global population is projected to pass 10 billion this century. Photograph: Getty
Earth is home to millions of species. Just one dominates it. Us. Our cleverness, our inventiveness and our activities have modified almost every part of our planet. In fact, we are having a profound impact on it. Indeed, our cleverness, our inventiveness and our activities are now the drivers of every global problem we face. And every one of these problems is accelerating as we continue to grow towards a global population of 10 billion. In fact, I believe we can rightly call the situation we're in right now an emergency – an unprecedented planetary emergency.
Ten Billion
by Stephen Emmott
We humans emerged as a species about 200,000 years ago. In geological time, that is really incredibly recent. Just 10,000 years ago, there were one million of us. By 1800, just over 200 years ago, there were 1 billion of us. By 1960, 50 years ago, there were 3 billion of us. There are now over 7 billion of us. By 2050, your children, or your children's children, will be living on a planet with at least 9 billion other people. Some time towards the end of this century, there will be at least 10 billion of us. Possibly more.
We got to where we are now through a number of civilisation- and society-shaping "events", most notably the agricultural revolution, the scientific revolution, the industrial revolution and – in the West – the public-health revolution. By 1980, there were 4 billion of us on the planet. Just 10 years later, in 1990, there were 5 billion of us. By this point initial signs of the consequences of our growth were starting to show. Not the least of these was on water. Our demand for water – not just the water we drank but the water we needed for food production and to make all the stuff we were consuming – was going through the roof. But something was starting to happen to water.
Back in 1984, journalists reported from Ethiopia about a famine of biblical proportions caused by widespread drought. Unusual drought, and unusual flooding, was increasing everywhere: Australia, Asia, the US, Europe. Water, a vital resource we had thought of as abundant, was now suddenly something that had the potential to be scarce.
By 2000 there were 6 billion of us. It was becoming clear to the world's scientific community that the accumulation of CO2, methane and other greenhouse gases in the atmosphere – as a result of increasing agriculture, land use and the production, processing and transportation of everything we were consuming – was changing the climate. And that, as a result, we had a serious problem on our hands; 1998 had been the warmest year on record. The 10 warmest years on record have occurred since 1998.
We hear the term "climate" every day, so it is worth thinking about what we actually mean by it. Obviously, "climate" is not the same as weather. The climate is one of the Earth's fundamental life support systems, one that determines whether or not we humans are able to live on this planet. It is generated by four components: the atmosphere (the air we breathe); the hydrosphere (the planet's water); the cryosphere (the ice sheets and glaciers); the biosphere (the planet's plants and animals). By now, our activities had started to modify every one of these components.
Our emissions of CO2 modify our atmosphere. Our increasing water use had started to modify our hydrosphere. Rising atmospheric and sea-surface temperature had started to modify the cryosphere, most notably in the unexpected shrinking of the Arctic and Greenland ice sheets. Our increasing use of land, for agriculture, cities, roads, mining – as well as all the pollution we were creating – had started to modify our biosphere. Or, to put it another way: we had started to change our climate.
There are now more than 7 billion of us on Earth. As our numbers continue to grow, we continue to increase our need for far more water, far more food, far more land, far more transport and far more energy. As a result, we are accelerating the rate at which we're changing our climate. In fact, our activities are not only completely interconnected with but now also interact with, the complex system we live on: Earth. It is important to understand how all this is connected.
Let's take one important, yet little known, aspect of increasing water use: "hidden water". Hidden water is water used to produce things we consume but typically do not think of as containing water. Such things include chicken, beef, cotton, cars, chocolate and mobile phones. For example: it takes around 3,000 litres of water to produce a burger. In 2012 around five billion burgers were consumed in the UK alone. That's 15 trillion litres of water – on burgers. Just in the UK. Something like 14 billion burgers were consumed in the United States in 2012. That's around 42 trillion litres of water. To produce burgers in the US. In one year. It takes around 9,000 litres of water to produce a chicken. In the UK alone we consumed around one billion chickens in 2012. It takes around 27,000 litres of water to produce one kilogram of chocolate. That's roughly 2,700 litres of water per bar of chocolate. This should surely be something to think about while you're curled up on the sofa eating it in your pyjamas.
But I have bad news about pyjamas. Because I'm afraid your cotton pyjamas take 9,000 litres of water to produce. And it takes 100 litres of water to produce a cup of coffee. And that's before any water has actually been added to your coffee. We probably drank about 20 billion cups of coffee last year in the UK. And – irony of ironies – it takes something like four litres of water to produce a one-litre plastic bottle of water. Last year, in the UK alone, we bought, drank and threw away nine billion plastic water bottles. That is 36 billion litres of water, used completely unnecessarily. Water wasted to produce bottles – for water. And it takes around 72,000 litres of water to produce one of the 'chips' that typically powers your laptop, Sat Nav, phone, iPad and your car. There were over two billion such chips produced in 2012. That is at least 145 trillion litres of water. On semiconductor chips. In short, we're consuming water, like food, at a rate that is completely unsustainable.
Demand for land for food is going to double – at least – by 2050, and triple – at least – by the end of this century. This means that pressure to clear many of the world's remaining tropical rainforests for human use is going to intensify every decade, because this is predominantly the only available land that is left for expanding agriculture at scale. Unless Siberia thaws out before we finish deforestation. By 2050, 1bn hectares of land is likely to be cleared to meet rising food demands from a growing population. This is an area greater than the US. And accompanying this will be three gigatons per year extra CO2 emissions.If Siberia does thaw out before we finish our deforestation, it would result in a vast amount of new land being available for agriculture, as well as opening up a very rich source of minerals, metals, oil and gas. In the process this would almost certainly completely change global geopolitics. Siberia thawing would turn Russia into a remarkable economic and political force this century because of its newly uncovered mineral, agricultural and energy resources. It would also inevitably be accompanied by vast stores of methane – currently sealed under the Siberian permafrost tundra – being released, greatly accelerating our climate problem even further.
Amazon rainforest smoulders after being cleared for cattle pasture in Brazil. Photograph: Michael Nichols/Getty Images
Meanwhile, another 3 billion people are going to need somewhere to live. By 2050, 70% of us are going to be living in cities. This century will see the rapid expansion of cities, as well as the emergence of entirely new cities that do not yet exist. It's worth mentioning that of the 19 Brazilian cities that have doubled in population in the past decade, 10 are in the Amazon. All this is going to use yet more land.
We currently have no known means of being able to feed 10 billion of us at our current rate of consumption and with our current agricultural system. Indeed, simply to feed ourselves in the next 40 years, we will need to produce more food than the entire agricultural output of the past 10,000 years combined. Yet food productivity is set to decline, possibly very sharply, over the coming decades due to: climate change; soil degradation and desertification – both of which are increasing rapidly in many parts of the world; and water stress. By the end of this century, large parts of the planet will not have any usable water.
At the same time, the global shipping and airline sectors are projected to continue to expand rapidly every year, transporting more of us, and more of the stuff we want to consume, around the planet year on year. That is going to cause enormous problems for us in terms of more CO2emissions, more black carbon, and more pollution from mining and processing to make all this stuff.
But think about this. In transporting us and our stuff all over the planet, we are also creating a highly efficient network for the global spread of potentially catastrophic diseases. There was a global pandemic just 95 years ago – the Spanish flu pandemic, which is now estimated to have killed up to 100 million people. And that's before one of our more questionable innovations – the budget airline – was invented. The combination of millions of people travelling around the world every day, plus millions more people living in extremely close proximity to pigs and poultry – often in the same room, making a new virus jumping the species barrier more likely – means we are increasing, significantly, the probability of a new global pandemic. So no wonder then that epidemiologists increasingly agree that a new global pandemic is now a matter of "when" not "if".
We are going to have to triple – at least – energy production by the end of this century to meet expected demand. To meet that demand, we will need to build, roughly speaking, something like: 1,800 of the world's largest dams, or 23,000 nuclear power stations, 14m wind turbines, 36bn solar panels, or just keep going with predominantly oil, coal and gas – and build the 36,000 new power stations that means we will need.Our existing oil, coal and gas reserves alone are worth trillions of dollars. Are governments and the world's major oil, coal and gas companies – some of the most influential corporations on Earth – really going to decide to leave the money in the ground, as demand for energy increases relentlessly? I doubt it.
Meanwhile the emerging climate problem is on an entirely different scale. The problem is that we may well be heading towards a number of critical "tipping points" in the global climate system. There is a politically agreed global target – driven by the Intergovernmental Panel on Climate Change (IPCC) – to limit the global average temperature rise to 2C. The rationale for this target is that a rise above 2C carries a significant risk of catastrophic climate change that would almost certainly lead to irreversible planetary "tipping points", caused by events such as the melting of the Greenland ice shelf, the release of frozen methane deposits from Arctic tundra, or dieback of the Amazon. In fact, the first two are happening now – at below the 2C threshold.
As for the third, we're not waiting for climate change to do this: we're doing it right now through deforestation. And recent research shows that we look certain to be heading for a larger rise in global average temperatures than 2C – a far larger rise. It is now very likely that we are looking at a future global average rise of 4C – and we can't rule out a rise of 6C. This will be absolutely catastrophic. It will lead to runaway climate change, capable of tipping the planet into an entirely different state, rapidly. Earth will become a hellhole. In the decades along the way, we will witness unprecedented extremes in weather, fires, floods, heatwaves, loss of crops and forests, water stress and catastrophic sea-level rises. Large parts of Africa will become permanent disaster areas. The Amazon could be turned into savannah or even desert. And the entire agricultural system will be faced with an unprecedented threat.
More "fortunate" countries, such as the UK, the US and most of Europe, may well look like something approaching militarised countries, with heavily defended border controls designed to prevent millions of people from entering, people who are on the move because their own country is no longer habitable, or has insufficient water or food, or is experiencing conflict over increasingly scarce resources. These people will be "climate migrants". The term "climate migrants" is one we will increasingly have to get used to. Indeed, anyone who thinks that the emerging global state of affairs does not have great potential for civil and international conflict is deluding themselves. It is no coincidence that almost every scientific conference that I go to about climate change now has a new type of attendee: the military.
Every which way you look at it, a planet of 10 billion looks like a nightmare. What, then, are our options?
The only solution left to us is to change our behaviour, radically and globally, on every level. In short, we urgently need to consume less. A lot less. Radically less. And we need to conserve more. A lot more. To accomplish such a radical change in behaviour would also need radical government action. But as far as this kind of change is concerned, politicians are currently part of the problem, not part of the solution, because the decisions that need to be taken to implement significant behaviour change inevitably make politicians very unpopular – as they are all too aware.
So what politicians have opted for instead is failed diplomacy. For example: The UN Framework Convention on Climate Change, whose job it has been for 20 years to ensure the stabilisation of greenhouse gases in the Earth's atmosphere: Failed. The UN Convention to Combat Desertification, whose job it's been for 20 years to stop land degrading and becoming desert: Failed. The Convention on Biological Diversity, whose job it's been for 20 years to reduce the rate of biodiversity loss: Failed. Those are only three examples of failed global initiatives. The list is a depressingly long one. And the way governments justify this level of inaction is by exploiting public opinion and scientific uncertainty. It used to be a case of, "We need to wait for science to prove climate change is happening". This is now beyond doubt. So now it's, "We need to wait for scientists to be able to tell us what the impact will be and the costs". And, "We need to wait for public opinion to get behind action". But climate models will never be free from uncertainties. And as for public opinion, politicians feel remarkably free to ignore it when it suits them – wars, bankers' bonuses and healthcare reforms, to give just three examples.
What politicians and governments say about their commitment to tackling climate change is completely different from what they are doing about it.
What about business? In 2008 a group of highly respected economists and scientists led by Pavan Sukhdev, then a senior Deutsche Bank economist, conducted an authoritative economic analysis of the value of biodiversity. Their conclusion? The cost of the business activities of the world's 3,000 largest corporations in loss or damage to nature and the environment now stands at $2.2tn per year. And rising. These costs will have to be paid for in the future. By your children and your grandchildren. To quote Sukhdev: "The rules of business urgently need to be changed, so corporations compete on the basis of innovation, resource conservation and satisfaction of multiple stakeholder demands, rather than on the basis of who is most effective in influencing government regulation, avoiding taxes and obtaining subsidies for harmful activities to maximise the return for shareholders." Do I think that will happen? No. What about us?
I confess I used to find it amusing, but I am now sick of reading in the weekend papers about some celebrity saying, "I gave up my 4×4 and now I've bought a Prius. Aren't I doing my bit for the environment?" They are not doing their bit for the environment. But it's not their fault. The fact is that they – we – are not being well informed. And that's part of the problem. We're not getting the information we need. The scale and the nature of the problem is simply not being communicated to us. And when we are advised to do something, it barely makes a dent in the problem. Here are some of the changes we've been asked to make recently, by celebrities who like to pronounce on this sort of thing, and by governments, who should know better than to give out this kind of nonsense as 'solutions': Switch off your mobile phone charger; wee in the shower (my favourite); buy an electric car (no, don't); use two sheets of loo roll rather than three. All of these are token gestures that miss the fundamental fact that the scale and nature of the problems we face are immense, unprecedented and possibly unsolvable.
The behavioural changes that are required of us are so fundamental that no one wants to make them. What are they? We need to consume less. A lot less. Less food, less energy, less stuff. Fewer cars, electric cars, cotton T-shirts, laptops, mobile phone upgrades. Far fewer.And here it is worth pointing out that "we" refers to the people who live in the west and the north of the globe. There are currently almost 3 billion people in the world who urgently need to consume more: more water, more food, more energy. Saying "Don't have children" is utterly ridiculous. It contradicts every genetically coded piece of information we contain, and one of the most important (and fun) impulses we have. That said, the worst thing we can continue to do – globally – is have children at the current rate. If the current global rate of reproduction continues, by the end of this century there will not be 10 billion of us. According to the United Nations, Zambia's population is projected to increase by 941% by the end of this century. The population of Nigeria is projected to grow by 349% – to 730 million people.
Afghanistan by 242%.
Democratic Republic of Congo 213%.
Gambia by 242%.
Guatemala by 369%.
Iraq by 344%.
Kenya by 284%.
Liberia by 300%.
Malawi by 741%.
Mali by 408%.
Niger by 766%.
Somalia by 663%.
Uganda by 396%.
Yemen by 299%.
Even the United States' population is projected to grow by 54% by 2100, from 315 million in 2012 to 478 million. I do just want to point out that if the current global rate of reproduction continues, by the end of this century there will not be 10 billion of us – there will be 28 billion of us.
Where does this leave us? Let's look at it like this. If we discovered tomorrow that there was an asteroid on a collision course with Earth and – because physics is a fairly simple science – we were able to calculate that it was going to hit Earth on 3 June 2072, and we knew that its impact was going to wipe out 70% of all life on Earth, governments worldwide would marshal the entire planet into unprecedented action. Every scientist, engineer, university and business would be enlisted: half to find a way of stopping it, the other half to find a way for our species to survive and rebuild if the first option proved unsuccessful. We are in almost precisely that situation now, except that there isn't a specific date and there isn't an asteroid. The problem is us. Why are we not doing more about the situation we're in – given the scale of the problem and the urgency needed – I simply cannot understand. We're spending €8bn at Cern to discover evidence of a particle called the Higgs boson, which may or may not eventually explain mass and provide a partial thumbs-up for the standard model of particle physics. And Cern's physicists are keen to tell us it is the biggest, most important experiment on Earth. It isn't. The biggest and most important experiment on Earth is the one we're all conducting, right now, on Earth itself. Only an idiot would deny that there is a limit to how many people our Earth can support. The question is, is it seven billion (our current population), 10 billion or 28 billion? I think we've already gone past it. Well past it.
Science is essentially organised scepticism. I spend my life trying to prove my work wrong or look for alternative explanations for my results. It's called the Popperian condition of falsifiability. I hope I'm wrong. But the science points to my not being wrong. We can rightly call the situation we're in an unprecedented emergency. We urgently need to do – and I mean actually do – something radical to avert a global catastrophe. But I don't think we will. I think we're fucked. I asked one of the most rational, brightest scientists I know – a scientist working in this area, a young scientist, a scientist in my lab – if there was just one thing he had to do about the situation we face, what would it be? His reply? "Teach my son how to use a gun."
This is an edited extract from Ten Billion, by Stephen Emmott
Link to Full Article: Humans – the real threat to life on Earth | Environment | The Observer
Meanwhile, another 3 billion people are going to need somewhere to live. By 2050, 70% of us are going to be living in cities. This century will see the rapid expansion of cities, as well as the emergence of entirely new cities that do not yet exist. It's worth mentioning that of the 19 Brazilian cities that have doubled in population in the past decade, 10 are in the Amazon. All this is going to use yet more land.
We currently have no known means of being able to feed 10 billion of us at our current rate of consumption and with our current agricultural system. Indeed, simply to feed ourselves in the next 40 years, we will need to produce more food than the entire agricultural output of the past 10,000 years combined. Yet food productivity is set to decline, possibly very sharply, over the coming decades due to: climate change; soil degradation and desertification – both of which are increasing rapidly in many parts of the world; and water stress. By the end of this century, large parts of the planet will not have any usable water.
At the same time, the global shipping and airline sectors are projected to continue to expand rapidly every year, transporting more of us, and more of the stuff we want to consume, around the planet year on year. That is going to cause enormous problems for us in terms of more CO2emissions, more black carbon, and more pollution from mining and processing to make all this stuff.
But think about this. In transporting us and our stuff all over the planet, we are also creating a highly efficient network for the global spread of potentially catastrophic diseases. There was a global pandemic just 95 years ago – the Spanish flu pandemic, which is now estimated to have killed up to 100 million people. And that's before one of our more questionable innovations – the budget airline – was invented. The combination of millions of people travelling around the world every day, plus millions more people living in extremely close proximity to pigs and poultry – often in the same room, making a new virus jumping the species barrier more likely – means we are increasing, significantly, the probability of a new global pandemic. So no wonder then that epidemiologists increasingly agree that a new global pandemic is now a matter of "when" not "if".
We are going to have to triple – at least – energy production by the end of this century to meet expected demand. To meet that demand, we will need to build, roughly speaking, something like: 1,800 of the world's largest dams, or 23,000 nuclear power stations, 14m wind turbines, 36bn solar panels, or just keep going with predominantly oil, coal and gas – and build the 36,000 new power stations that means we will need.Our existing oil, coal and gas reserves alone are worth trillions of dollars. Are governments and the world's major oil, coal and gas companies – some of the most influential corporations on Earth – really going to decide to leave the money in the ground, as demand for energy increases relentlessly? I doubt it.
Meanwhile the emerging climate problem is on an entirely different scale. The problem is that we may well be heading towards a number of critical "tipping points" in the global climate system. There is a politically agreed global target – driven by the Intergovernmental Panel on Climate Change (IPCC) – to limit the global average temperature rise to 2C. The rationale for this target is that a rise above 2C carries a significant risk of catastrophic climate change that would almost certainly lead to irreversible planetary "tipping points", caused by events such as the melting of the Greenland ice shelf, the release of frozen methane deposits from Arctic tundra, or dieback of the Amazon. In fact, the first two are happening now – at below the 2C threshold.
As for the third, we're not waiting for climate change to do this: we're doing it right now through deforestation. And recent research shows that we look certain to be heading for a larger rise in global average temperatures than 2C – a far larger rise. It is now very likely that we are looking at a future global average rise of 4C – and we can't rule out a rise of 6C. This will be absolutely catastrophic. It will lead to runaway climate change, capable of tipping the planet into an entirely different state, rapidly. Earth will become a hellhole. In the decades along the way, we will witness unprecedented extremes in weather, fires, floods, heatwaves, loss of crops and forests, water stress and catastrophic sea-level rises. Large parts of Africa will become permanent disaster areas. The Amazon could be turned into savannah or even desert. And the entire agricultural system will be faced with an unprecedented threat.
More "fortunate" countries, such as the UK, the US and most of Europe, may well look like something approaching militarised countries, with heavily defended border controls designed to prevent millions of people from entering, people who are on the move because their own country is no longer habitable, or has insufficient water or food, or is experiencing conflict over increasingly scarce resources. These people will be "climate migrants". The term "climate migrants" is one we will increasingly have to get used to. Indeed, anyone who thinks that the emerging global state of affairs does not have great potential for civil and international conflict is deluding themselves. It is no coincidence that almost every scientific conference that I go to about climate change now has a new type of attendee: the military.
Every which way you look at it, a planet of 10 billion looks like a nightmare. What, then, are our options?
The only solution left to us is to change our behaviour, radically and globally, on every level. In short, we urgently need to consume less. A lot less. Radically less. And we need to conserve more. A lot more. To accomplish such a radical change in behaviour would also need radical government action. But as far as this kind of change is concerned, politicians are currently part of the problem, not part of the solution, because the decisions that need to be taken to implement significant behaviour change inevitably make politicians very unpopular – as they are all too aware.
So what politicians have opted for instead is failed diplomacy. For example: The UN Framework Convention on Climate Change, whose job it has been for 20 years to ensure the stabilisation of greenhouse gases in the Earth's atmosphere: Failed. The UN Convention to Combat Desertification, whose job it's been for 20 years to stop land degrading and becoming desert: Failed. The Convention on Biological Diversity, whose job it's been for 20 years to reduce the rate of biodiversity loss: Failed. Those are only three examples of failed global initiatives. The list is a depressingly long one. And the way governments justify this level of inaction is by exploiting public opinion and scientific uncertainty. It used to be a case of, "We need to wait for science to prove climate change is happening". This is now beyond doubt. So now it's, "We need to wait for scientists to be able to tell us what the impact will be and the costs". And, "We need to wait for public opinion to get behind action". But climate models will never be free from uncertainties. And as for public opinion, politicians feel remarkably free to ignore it when it suits them – wars, bankers' bonuses and healthcare reforms, to give just three examples.
What politicians and governments say about their commitment to tackling climate change is completely different from what they are doing about it.
What about business? In 2008 a group of highly respected economists and scientists led by Pavan Sukhdev, then a senior Deutsche Bank economist, conducted an authoritative economic analysis of the value of biodiversity. Their conclusion? The cost of the business activities of the world's 3,000 largest corporations in loss or damage to nature and the environment now stands at $2.2tn per year. And rising. These costs will have to be paid for in the future. By your children and your grandchildren. To quote Sukhdev: "The rules of business urgently need to be changed, so corporations compete on the basis of innovation, resource conservation and satisfaction of multiple stakeholder demands, rather than on the basis of who is most effective in influencing government regulation, avoiding taxes and obtaining subsidies for harmful activities to maximise the return for shareholders." Do I think that will happen? No. What about us?
I confess I used to find it amusing, but I am now sick of reading in the weekend papers about some celebrity saying, "I gave up my 4×4 and now I've bought a Prius. Aren't I doing my bit for the environment?" They are not doing their bit for the environment. But it's not their fault. The fact is that they – we – are not being well informed. And that's part of the problem. We're not getting the information we need. The scale and the nature of the problem is simply not being communicated to us. And when we are advised to do something, it barely makes a dent in the problem. Here are some of the changes we've been asked to make recently, by celebrities who like to pronounce on this sort of thing, and by governments, who should know better than to give out this kind of nonsense as 'solutions': Switch off your mobile phone charger; wee in the shower (my favourite); buy an electric car (no, don't); use two sheets of loo roll rather than three. All of these are token gestures that miss the fundamental fact that the scale and nature of the problems we face are immense, unprecedented and possibly unsolvable.
The behavioural changes that are required of us are so fundamental that no one wants to make them. What are they? We need to consume less. A lot less. Less food, less energy, less stuff. Fewer cars, electric cars, cotton T-shirts, laptops, mobile phone upgrades. Far fewer.And here it is worth pointing out that "we" refers to the people who live in the west and the north of the globe. There are currently almost 3 billion people in the world who urgently need to consume more: more water, more food, more energy. Saying "Don't have children" is utterly ridiculous. It contradicts every genetically coded piece of information we contain, and one of the most important (and fun) impulses we have. That said, the worst thing we can continue to do – globally – is have children at the current rate. If the current global rate of reproduction continues, by the end of this century there will not be 10 billion of us. According to the United Nations, Zambia's population is projected to increase by 941% by the end of this century. The population of Nigeria is projected to grow by 349% – to 730 million people.
Afghanistan by 242%.
Democratic Republic of Congo 213%.
Gambia by 242%.
Guatemala by 369%.
Iraq by 344%.
Kenya by 284%.
Liberia by 300%.
Malawi by 741%.
Mali by 408%.
Niger by 766%.
Somalia by 663%.
Uganda by 396%.
Yemen by 299%.
Even the United States' population is projected to grow by 54% by 2100, from 315 million in 2012 to 478 million. I do just want to point out that if the current global rate of reproduction continues, by the end of this century there will not be 10 billion of us – there will be 28 billion of us.
Where does this leave us? Let's look at it like this. If we discovered tomorrow that there was an asteroid on a collision course with Earth and – because physics is a fairly simple science – we were able to calculate that it was going to hit Earth on 3 June 2072, and we knew that its impact was going to wipe out 70% of all life on Earth, governments worldwide would marshal the entire planet into unprecedented action. Every scientist, engineer, university and business would be enlisted: half to find a way of stopping it, the other half to find a way for our species to survive and rebuild if the first option proved unsuccessful. We are in almost precisely that situation now, except that there isn't a specific date and there isn't an asteroid. The problem is us. Why are we not doing more about the situation we're in – given the scale of the problem and the urgency needed – I simply cannot understand. We're spending €8bn at Cern to discover evidence of a particle called the Higgs boson, which may or may not eventually explain mass and provide a partial thumbs-up for the standard model of particle physics. And Cern's physicists are keen to tell us it is the biggest, most important experiment on Earth. It isn't. The biggest and most important experiment on Earth is the one we're all conducting, right now, on Earth itself. Only an idiot would deny that there is a limit to how many people our Earth can support. The question is, is it seven billion (our current population), 10 billion or 28 billion? I think we've already gone past it. Well past it.
Science is essentially organised scepticism. I spend my life trying to prove my work wrong or look for alternative explanations for my results. It's called the Popperian condition of falsifiability. I hope I'm wrong. But the science points to my not being wrong. We can rightly call the situation we're in an unprecedented emergency. We urgently need to do – and I mean actually do – something radical to avert a global catastrophe. But I don't think we will. I think we're fucked. I asked one of the most rational, brightest scientists I know – a scientist working in this area, a young scientist, a scientist in my lab – if there was just one thing he had to do about the situation we face, what would it be? His reply? "Teach my son how to use a gun."
This is an edited extract from Ten Billion, by Stephen Emmott
Link to Full Article: Humans – the real threat to life on Earth | Environment | The Observer
Subscribe to:
Posts (Atom)